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A mechanism of formation of structural heterogeneities in crystallization of alloys is considered. A 
mathematical model of heat and mass transfer in irregular freezing of alloys, a calculation algorithm, and 
some results of numerical calculations are given. 

Establishing the interrelationship between the processes of heat and mass transfer and formation of the alloy 
crystalline structure is of practical importance since it offers the possibility to purposefully vary the structural properties and 
quality of material by controling the relevant external conditions of heat and mass transfer. 

In order to explain the heterogeneity of the microstructure of materials and the substantial nonuniformity of impurity 
distribution in the alloy, it is usually assumed [1] that the process of freezing involves two elemental processes: crystal 

nucleation in the bulk of a melt and growth of the crystals from these nuclei until they collide with other growing crystals. 
However, numerous experimental data testify that with relatively small supercoolings of the melt we observe very rapid 
growth of crystals [2]. This allows us to conclude [2] that nuclear growth of crystals does not play a substantial part since the 
rate of this process is extremely small. The validity of the above conclusion is also confirmed by the following. 

Crystal nucleation in the bulk of a supercooled melt and their subsequent growth must inevitably lead to formation of 
closed areas, restricted by crystal surfaces, which are filled with a liquid metal. Its freezing, by virtue of different densities 
of metal in the liquid and solid states, must be accompanied by origination of shrink holes, distributed throughout the entire 
bulk. This is not verified by experimental data. Removal of relatively large phase transition heat from the crystals growing 

inside the melt is possible with considerable temperature gradients. In the bulk of the melt, however, these gradients are 
usually small. 

The present work deals with the mechanism of formation of structural heterogeneities due to the irregular growth of 
crystals on the frozen metal surface. A mathematical model of the process of heat and mass transfer in irregular freezing of 
alloys, a calculation algorithm, and some results of numerical experiments are given. 

The irregular, or discontinuous, character of alloy crystallization is caused by the following condition. The process 
of freezing starts and resumes, given some supercooling of the alloy AT = T L -- T, where T is the temperature at the phase 
boundary and T L is the equilibrium temperature of phase transition. The process of crystallization discontinues each time, 

when the melt is superheated, i.e., when the temperature at the phase boundary T will exceed the temperature T L. According 
to this, the process of freezing the alloy may be represented in the following manner. At the initial time, as a result of heat 
removal through the external boundaries of the ingot, a decrease in the alloy temperature occurs. When the temperature at the 
boundary of the ingot tb(r ) attains the value at which T L - -  t b _> AT, crystallization of the alloy starts. At the boundary of 
freezing there is a jump in the impurity concentration, say carbon, determined by the distribution coefficient k = Cs/C L < 1, 

where C~ and CL are the impurity concentrations in the solid and liquid phases of the alloy in the vicinity of the phase 
boundary. Due to this circumstance, as well as to the smallness of the diffusion coefficient of the impurity in the alloy, the 
impurity concentration ahead of the freezing front grows with crystallization, which leads to a drop in the temperature T L. 

At the instant when TL becomes lower than the temperature T at the phase boundary, the period of freezing the alloy 
stops and the period of cooling starts. It is characterized by the fact that, owing to diffusion, the impurity concentration in 
front of the phase boundary decreases and correspondingly the temperature T L elevates. At the moment when the condition T L 
--  T >_ AT is satisfied, the period of cooling starts. Thus, freezing of the ingot is characterized by alternating the periods of 
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Fig. 1. Number of periods of freezing (cooling) vs time at different 

values of the diffusion coefficients in the liquid phase D L and of the 

limiting supercooling of the melt AT: 1) D L = 0.5 • 10 -6, AT = 0.5; 

2) 0.1 • 10 -5 and 0.5; 3) 0.5 • 10 -s and 0.5; 4) 0.5 x 10 -6 and 

0.25; 5) 0.1 • 10 -5 and 0.25; 6) 0.5 x 10 -5 and 0.25. s, sec -1 ; r, 

sec. 

cooling and freezing. It is obvious that each period of freezing is related to the origination and formation of new crystals. The 

thickness of the hard metal layer formed over one period of freezing determines the size of the crystals originating in the 

process. 

We will give a mathematical model and a calculation algorithm for the process of irregular freezing of a sufficiently 

long cylindrical ingot of the two-component alloy. Let us assume that the influence of convection on the temperature and 

impurity concentration fields may be neglected. The functions of temperature t(r, 7-) and impurity concentration C(r, 7-) at the 

interior points of the liquid (0 < r < z) and solid (z < r < R) phases satisfy the equations of heat conduction and diffusion 

cp -- rk , O < r < z ,  z < r < R ;  (1) 
Or r Or 

oc  1 o e c  
0 < r < z ,  (2) 

O'r r Or ~, Or ] 

For the initial instant r = 0 we prescribe the temperature t(O, r) and impurity concentration C(0, r) fields and the 

coordinate of the phase boundary z(0) 

t(O, r)~=to(r), C(O r ) = C o ( r ) ,  z ( O ) = z o .  (3) 

If the process of crystallization does not commence at the initial instant, then z(O) = R. On the cylinder axis (r = O) we have 

the symmetry condition 

at (o, ~) oc (o, ~) 
= - o .  ( 4 )  

Or Or 
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On the outer surface of the cylinder we have conditions of heat transfer of the third kind and of the absence of mass exchange 

Z, at (R, ~) OC (R, ~) (5) 
= ~x~ It (R,  "0 - -  tc], 0. 

Or Or 

The conditions of heat and mass transfer at the phase boundary (r = z) are of alternative character due to the 

alternation of the periods of freezing Tf' < ~- < 7f" and cooling 7 c' < ~- < ~-c" of the alloy. The condition for the onset of 

freezing at the instant 7 = 7f at the boundary z satisfies the inequality 

TL - -  T (~f) ~ AT. (6) 

To determine the temperature at the phase boundary in the period of freezing 7f' < 7 < 7f" with supercooling of the 

melt, we consider a thermal state of the elemental metal liquid layer z < r < z + dz in the vicinity of a moving boundary. 

Let v be the velocity of movement of the phase boundary along the normal, then in the time dr = dz/v the element under 

consideration completely freezes. If the overall heat lost by the elemental layer in the time dr is the heat of phase transition, 
then from the equation of energy balance for this element 

--L(z) Or(z, T) + ~(z + dz) Ot(z 4-dz, "c) 
Or Or 

Ot (z +dz/2,  ~) dz = cp p q _  
O~ d'r 

it follows that the heat transfer at the phase boundary in the period of freezing is determined by the Stefan condkion, and the 

partial derivative of temperature with respect to time at the phase boundary is Ot(z, O/Or = O. Let us assume that the 

temperature function at the time r in the liquid phase in the vicinity of the moving boundary r -- z is sufficiently smooth, then 

t(z + dr, r + dr) = T(z, r) + dr(&(z, z)/Or) + dT(&(z, 7)/37. Since Ot(z, 7)/37 = O, then from the last relation it follows 
that 

dT (z, ~) Ot (z, T) 
~ -  7J 

dz Or 

In accordance with the given calculations the conditions of heat and mass transfer at the boundary r = z in the period 

of freezing rf' < r < re" may be written in the following way: 

(z - -O)  Ot(z--O,  x) Z(z +O) Ot(z-4-O, ~) dz . 
Or .... Or - pq d ~  ' (7) 

t ( z - - O ,  x ) = / ( z + O ,  x ) -=T(z ,  x), dT (z, "~) dz Ot (z, "0 . 
dz dz Or ' (8) 

D(z_ _o )  OC(z--O,  ~) D ( z + o )  OC(z+O,  x) _ dz [ C ( z + O ,  x ) - - C ( z - - O ,  "c)]; 
Or , Or d~ (9) 

C(z--O,.O=kC(z+O, % k < l ;  0o) 

T L  (2 ,  T )  = T A  - -  pC (z - -  O, "0- 

The mass conservation equation in the vicinity of the phase boundary (9) may be replaced by the equivalent one 

(ll) 

L L 

.f C (r, T) 2nrdr - -  S C (r, O) 2z~rdr =/}. (12) 
0 0 
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The last equation can be obtained by integrating (2) with respect to r and r, taking account of  the conditions of  heat and mass 

transfer on the boundary surfaces. 

The condition of  completion at the instant 7- = rf" of  the freezing period is the occurrence of  superheating in 

reference to the phase transition temperature 

a 

rL (z, ~) ~< 7" (z, ~e). (13) 

In the period of  cooling r~' < r < r~" at boundary r = z there are the boundary conditions of  the fourth kind 

~. (z  - -  O) Ot (z  - -  O, ~c) = ;~ (z 4-  O) Ot (z  4-  O, -c) 
Or Or 

t ( z - - O ,  "r) = / (z 4-  O, T)----- T(z,  ~). 

The temperature T(z, z) in this period decreases while the temperature T k elevates. The condition of completion of  the 

cooling period and onset of  the freezing period at the moment r = to" = rf' is fulfillment of  inequality (6). 

For the numerical realization of the formulated problem use is made of  a combined difference method with explicit 

identification of phase boundaries [3] and a three-layer explicit difference schema [4,5]. Calculation of  the grid functions tl ", 

Ci ~ z", approximating the functions t(r, r) ,  C(r, z), z(r) on the difference grid r i = ih, i = 0,1 . . . . .  I + 1, h = R/I; r ,  = T, 

_ ~ + l. ,  n = 0, 1, .. . ,  l, > 0, r0 = 0, is performed in the following order. From the initial conditions (4) we determine 

t ~  C ~  z ~  (14) 

The values of  ti n+l and Ci n+l at the interior nodal points of  the region, which are removed from the boundary r = z for a 

distance not smaller than the space layout step h, are found from the three-layer explicit difference equations. For Eq. (1) this 

schema is written as follows: 

(I 4- o ~ )  t?+~ - -  t7 o .  t7 - -  tT -  ~ = ~ 1  x 
�9 17~+1 l,, 2cphZri 

• [(L;+lri+l + ) ~ i r ; ) ( t ~  - -  tT) - -  (L;r~ + ~,~-ari-a)(t7 - -  t;%~)]; 

0 , , ~ 0 ,  n = 2 ,  3 . . . .  ; O~=O;  

i =  1, 2 . . . . .  m ~ - -  2, m~ 4 - 1 ,  tn,, 4-  2 . . . . .  1. 

d5) 

The stability condition @, > l,X(cph 2) - -  0.5, (9, > 0, and Eqs. (15), just as for the case of  implicit schemas, do not 

practically impose limitations on the grid steps h and 1. 

At the nodal point i = 0 the values of  t "+ '  and Ci "+~ are determined from a linear difference equation of heat 

conduction written according to the symmetry conditions (4). For the function t~ "+~ it has the form 

t~ + 1 -  t~ _ 2 (~ + ~.o)(~+1 _ t~+l). (16) 
ln+l cO ~ 

Here h = h, t = h,  X = •1 for z > h and h = z, t = T, X = X(T - -  0) for z < h. To determine tl+a "+~ and C[+~ "+~ at 

the nodal point beyond the contour we employ the difference approximations of  the conditions (5) 

(17) 
: .~+, _ C7 +_ -.+' tT+l , .+~ ,  , . , -~ ,  

~.z ~z+ ~ - = =r (t7 + ~ - o. - -  ~ C '  1 ,  2h 2h 

In the period of  cooling r~' < 7" < r~" the position of  the phase boundary remains unchanged, i.e., z "+a = z". In the period 

of freezing re' < 7" < 7.f" the value of z "+1 is determined from the explicit difference equation which approximates (7) 

z "+I z n t~  - -  T"  T n t n (18) 
- -  - -  m - - I  

pq l~+1 -- ~'z-o An L~+~ h - -  A n - -  Q~" 
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Here A" is the distance from the freezing front z n to the nearest nodal point i = m in the direction of  the axis r, 0 < A n = 

rm - -  z n < h. The temperature T n+ ~ at the phase boundary in the process of  phase transition of  the alloy from the liquid state 

to the solid one is found from the difference approximation of the conditions (8): 

t,7,_,--P 09) 
T n + I = T  n + ( z , , + l _ : )  h - - - A  n 

The temperatures tm "+~ and t m_ 1 n+l at the nodal points, adjacent to the moving boundary, are determined f rom the implicit 

difference approximations of  the heat conduction equation 

tn+ 1 n 
,,, - -  tin 1 [ 

/(;~,,+:,n+~ + ;~,,r,~) x 
l,+x r,~ (h + A '~- "c~ ,,P,, I_ (20) 

t n+l :+ l  Tn~-I ] 
+ 1  - -  t7 +l  (7~r~rm q- :.~-oz ~ An+t 

n+ h In - -  
x h ] 

tn+ 1 n [ 
In - I  - -  t m - I  = 1 (~,z-o z n e l  "J- ~ m - l r m - x )  X 

I.+1 rm-1 (2h - -  A ~+ 1) Cra-lPm-1 L 

An+t (Lm-:m-1 -~ Lrn-2rrn-q.,) I~m--I . 
h 

(21) 

Equation (21) cannot be employed for the instant rn+~, when mnh - -  z n+* becomes larger than the step h, i.e., the front passes 

through the nodal point rr h - -  1. In this case the value of rn.+, = ran 1 and the temperature �9 "+~ - -  ,,~n_~ are determined by 
interpolation 

tn+ 1 T m .  +lh  - -  z n+ t 
= - -  - -  t ~ , ,  ). ran+ 1 m ~ h _ z . + l  (T ,,-t (22) 

Equations (20) and (21) just as (22) contain one unknown each and can be solved with respect to t~n "+l and t m _ 1 n+l 

Concentrations at the phase boundary Cz+0, C~.0 and at the adjacent nodal points m.  and m. - -  1 are determined by 

a joint solution of Eq. (11) and the difference approximations of  Eq. (12) and the heat conduction equation for the points m. 

and Inn - -  1. Equation (12), in the absence of mass transfer at the outer boundary of the solid, is represented in the form 

G,+ l __ GO = 0. (23) 

Here G ~ is the,approximate expression of  the integral j 0 L C(r, r.)2a-rdr. In view of  relation (11) the function G can be 

determined, for example, by the trapezoid formula in the following manner: 

r t/ G" -= ah(roC'~ -F 2rlC'~ -F 2ro.C'~ q- ... -F 2rinn_eC,~-2 q- ,,n_lC,~n-i -4- 

r n r n ... n n + mnC•n-4- 2 mn_~lCinn+l -~ + 2r i_ iC l_  1 Jr- r l C l )  -at- 

n n c n  + ~a"  (rm, C~," + z kCz-o) + ~ (h - -  A")(z"C~'_o + r,.,~+~ in,,+~). 

The diffusion equation (2) for the nodal points nan and rn, 1 is approximated by the implicit difference equations 

c n +  1 n 
i n  n - -  C ~ I I ,  t _ 1 

ln+~ r,. (h + Az '~+j) [ ( D m . + : , % + l  + Dm rm ) • 

X 
c n + l  p n + l  

m n + l - - ~ m  n 
h - -  (Dmnrm. -4- D2+o z"+l) A.+1 

cn4.1 t.t',n+ 1 
m r  * - -  t o t . . , 2 _  0 

; 

(24) 

(25) 
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c n +  1 C n 
m n - - 1 - -  mn--I ~ 1 [ (Dz_oZ ,+l+ 

D r a n - l r m n - l )  X in+l rmn_l (2h + A n+l) [ 

cn+l cn+t z--O - -  mn--I 
x h _ _ A n +  1 

c n + l  o n + l  1 m n - - l ~ m n - -  2 
- -  (V~ _lrm _ 1 -4- D~n_2rm _2) h " 

(26) 

When rn.h - -  z ~+~ > h, ,...mn t~ _ ln+l  is determined from the expression, similar to (22), 

ran__ 1 ~ ~ m n +  1 
mn+l h __ zn+ 1 
m . h  - -  z n+' (kC~+-~ - -  C~+')" 

(27) 

As a result of  joint solution of  the system of  Eqs. (24)-(26) with nan+ 1 = rn. or (24), (25), and (27) with rn~+ l = rn~ - -  1 the 

values of  Cz_o  "+~, C,.n"+~, and C,~n_~n+~ are determined. The temperature of  phase transition T ~  +~ is determined, according 

to (11), from the relation 

TnZ +' = T A - -  pC~z+~. (28) 

In the period of  freezing T L may decrease, while T does not decrease. The moment of  transition from freezing to 

cooling rf" = r~' lies in the interval r ,  < z < r.+~ if T" < TL" and T "+~ > TL n+~. In the period of cooling the coordinate 

of  the front z remains unchanged. In the period of cooling a reconstruction of  the temperature field in the vicinity of  the 

phase boundary occurs due to a variation of the heat-transfer conditions at this boundary. To find the temperature T in the 

period of cooling, in this connection it is appropriate to take advantage of the heat balance equation for the element z ~ - (h 

- - A ' ~ ) t 2  < r < z ~ + A~ /2  

1 C n n n T"+~ - -  T n 
[( ~n- i  +C=-o)  (h - -  A n) +(C~+o +Cmn) A n] 

2 l .+  1 

(29) 

= (~,,-o t ~ + ' - - T " + x  T " + x - - t : + ' a )  
h - -  A ~ 

To find the values of  Cz_o~+~ and C z + f  +1, C,,n"+l, C,,~ - a in the period of cooling we can employ the equations of  impurity 

mass balance for the elements z ~ -  ( h -  A~)/2 < r < z ~ and z ~ < r < z" + A~/2 

/,~n-~- 1 f~rt d-, 1 (30) t "n+  1 C~-o  ".~z-9 --',..'mn--I 
1 ( h - - A  n) ~ - 0 - -  D z - 0  
2 l~+ 1 h - -  A n 

~ n + l  n ~ n + I c n + l  
1 An ~ z + o - - C z + 0  _ Oz+o ~ m  n z~O 

2 ln+l A n (31) 

in combination with Eqs. (25), (26). Equations (30) and (31) are written under the assumption that the phase boundary is 

impermeable for the impurity mass. 
C n rl+l n If  the diffusion in the solid phase can be disregarded, then in this case Cz+0 "+1 z+0 , Cm n = Cmn , and Cz_ 

0 n+t and C,~a_ 1 n+l may be found from the system of  equations (23), (24), and (26). 

Figure 1 shows the results of  calculation, characterizing a variation in the number of  f reez ing-cool ing  periods s 

depending on time at different values of  the diffusion coefficient and the limiting supercooling AT for a cylindrical steel ingot 

with R = 0.2 • 10 -2 m, T o = 1510~ and Co = 0.1%. From the figure it is evident that the number of  periods s is 

approximately inversely proportional to the supercooling AT. 

All the curves s = s(r) have three characteristic parts. In the first part there is a rapid growth of s, which is 

responsible for the presence of  a fine-grained structure near the outer surface of  the ingot. The second part, in which s varies 

slowly, corresponds to the zone of large crystals. The third time part, where the rate of  variation of the function s and the 
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impurity concentration substantially grow, fits the zone of relatively small crystals. As is well known there are precisely three 
main zones [1]: the outer fine-grained skin, the zone of columnar crystals, and the zone of equiaxed crystals that characterize 
the cast ingot structure. A qualitative agreement between the results of numerical modeling and experimental data on the 
structure of the cast ingot points to the goodness of fit of the mathematical model given. 
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